Storm surge climate in the western Baltic Sea 1948-2012

Hendrik Weidemann, Ralf Weisse

Zentrum für Material- und Küstenforschung

Introduction

Green: Land with elevation below height of the 1872 storm surge Source: www.kuestenschutzbedarf.de

- → Germany coastline ~ 3.700 km;
 50% Baltic Sea coast (BSH)
- \rightarrow Western part
 - → relatively shallow (around 20m)
 - \rightarrow low lying coast
 - \rightarrow fragmented coastline
- → At risk for storm surges, rising mean sea levels and erosion

- → Can we describe the storm surge climate of the western Baltic Sea from numerical modelling?
- \rightarrow Can we analyze long-term changes in a consistent and homogeneous way?
- → Can we enhance the understanding of potential contributions from processes such as prefilling and seiches?
- → Can we provide a first step towards a climatology of such processes including their long-term changes?

(PhD Thesis, Hendrik Weidemann, To be submitted by the end of February 2014)

Approach

- \rightarrow Ocean model TRIM-NP (Kapitza 2008)
- \rightarrow 4 nests from 12.8 km to 1.6 km
- \rightarrow Tides from FES2004 (grid 1)
- \rightarrow Atmospheric Forcing:
 - → Dynamically downscaled NECP
 Reanalysis 1948-2012 (Geyer 2013)
 - → Hourly near-surface marine wind fields and sea level pressure
 - → Approx. 18x18km grid bilinearly interpolated to model grids
- → Barotropic simulation
 (no temperature and salinity effects)
- \rightarrow No sea-ice model included

→ Can we describe the storm surge climate of the western Baltic Sea from numerical modelling?

Validation

Validation

Validation

- Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung
- → Barotropic simulation
 No sea-ice model included
- \rightarrow Does it matter?
- → Comparison with baroclinic simulation including sea-ice
- \rightarrow Example here: Kiel
 - → Baroclinic simulation reveals systematic
 bias not present in the 2D simulation
 - → Problem might be associated with model and/or tide gauges
 - → When bias removed skill of simulations comparable
- → Barotropic simulation adequate for the purpose of this study

Storm surge climate 1948-2012

- → Seasonal 99-Percentiles from hourly values
- → Generally extremes are highest in winter and lowest in summer
- → Intermediate values in the intermediate seasons
- → Values generally smaller in open sea; increasing towards the coast
- → More comprehensive analysis in Hendrik's PhD

 \rightarrow Can we analyze long-term changes in a consistent and homogeneous way?

Long-term changes

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

- \rightarrow Example here Flensburg
- \rightarrow Upper panel: Metric
 - \rightarrow Number
 - \rightarrow Duration and
 - → Intensity of events exceeding the longterm 99 Percentile
- \rightarrow Lower panel: Different Metric
 - → BSH operational definition (light, average, severe storm surge)
- → Pronounced inter-annual and decadal variability in all metrics
- → Upward trends over the analysis period not significant

Long-term changes

Zentrum für Material- und Küstenforschung

Change in annual 99 Percentiles in cm/65 years derived from linear trend

Decadal variability illustrated by 15-year means of annual 99 Percentiles

→ Can we enhance the understanding of potential contributions from processes such as prefilling and seiches?

Approach

- \rightarrow Prefilling
 - → Mean sea level in Landsort exceeds long-term average by 15 cm or more for at least 15days
- \rightarrow Seiches
 - → detected by means of a moving harmonic analysis
 - → using prescribed frequencies from
 Wuebber and Kraus (1979)
 (31.0, 26.4, 22.4 and 19.8 hrs)
 - → analysis window 96 hrs shifted by 1hr to account for the pulse-like character of the seiches
 - → time series of amplitude, phase and contribution to observed water level for each constituent

Prefilling

2 4 6 8 10 12 14 16 18 20 22 24 Windgeschwindigkeit [m/s]

- Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung
- \rightarrow Example here: Wismar
- → Separation of storm surge cases according to prefilling
 - → Approx. half of the storm surge occurred when prefilling was observed
 - → Approx. half when prefilling conditions were absent
- \rightarrow Wind speeds
 - → On average smaller when storm surge occurred and prefilling was observed
 - → For cases without prefilling distribution shifted towards higher values
- → When prefilling occurs, lower wind speeds are needed to exceed storm surge thresholds

Seiches

- \rightarrow Example here: Wismar
- → Separation of storm surge cases according to contribution from seiches
 - \rightarrow Approx. 60% of storm surges with contributions from seiches <10 cm
 - \rightarrow About 37% with contributions >+10cm
 - \rightarrow ~3% with contributions <-10cm
- → Preferred phase-shift between peak of surge and peak of seiche
 - \rightarrow For Wismar and T=31 hrs ~90 degrees
 - \rightarrow On average only small contributions
 - → However, considerable amount of cases with substantial contributions

→ Can we provide a first step towards a climatology of such processes (seiches and prefilling) including their long-term changes?

Example: Prefilling

- Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung
- \rightarrow Example here: Landsort
- → Number, duration and intensity of prefilling conditions
- → On average conditions lasted for 43 days
- → Longest event: 123 days (12/91-04/92)
- → Pronounced inter-annual and decadal variability with strongest events occuring in the early 1990s
- \rightarrow No significant trends

- → Storm surge climate of the western Baltic Sea can reasonably be derived from numerical modelling.
- → Results suggest pronounced inter-annual and decadal variability of the storm surge climate but no substantial long-term trend.
- → Prefilling and seiches contributed substantially to some of the observed peak water levels at the German coast.
- → When prefilling occurs, generally lower wind speeds were needed to sustain comparable peak water levels.
- → In roughly 1/3 of the storm surge cases (in Wismar) contribution from seiches to peak water levels exceeded 10 cm.