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ES Why model weighting? SMHI

= Multi-model ensemble predictions/projections can be

characterized by a large uncertainty due to the inter-model
Spread
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= Different models within the ensemble might have different
levels of performance in climate simulation/prediction

= By weighting the models based on their “performance” it might
be possible to reduce the uncertainty and increase the
reliability of the prediction/projection
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Regional climate models (RCMs)

Global climate models (GCMs)

The ENSEMBLES GCM-RCM Matrix SMHI
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Methodological approach SM|'||

= Develop weights based on different metrics of model performance in
reproducing present day climate characteristics, with emphasis on the
“added value” obtained from RCMs

= Six metrics were identified (based on ERA40-driven runs)

= F1: Large scale circulation and weather regimes (CNRM)

m  [F2: Temperature and precipitation meso-scale signal (ICTP)

=  [3: PDFs of daily precipitation and temperature (DMI, UCLM,SHMI)
=  F4: Temperature and precipitation extremes (KNMlI; HC)

=  F5: Temperature trends (MPI)

=  F6: Temperature and precipitation annual cycle (CUNI)

= Weights have been calculated for single seasons and regions and then
averaged to yield one final number per model

Christensen et al., Clim. Res. accepted for publication
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NN The RCM ensemble SMHI
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= 15 RCMs at 25km, lateral boundary conditions from ERA40
= Analysis period 1961-2000
= Common minimum domain, all data regridded to a common 25 km lat-lon grid

= Observations on monthly {CRU 0.16 degree (Mitchell et al. 2003)} and daily {EOBS 0.25

degree (Haylock et al. 2008)}
Christensen et al., Clim. Res. accepted for publication



B F1: Large scale circulation and SMHI
iSSS weather regimes

= Mean behavior
= Frequency of occurrence, W(1,1,2)
= Spatial composite, W(1,1,1)
= Duration, W(1,1,3)
= |nterannual variability
= Variance of the frequency of occurrence, W(1,2,1)
= Temporal correlation, w(1,2,2)
= Daily behavior

= Total number of days per season, W(1,3,1)
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= Daily Z500 data
= Clustering by PCA |
= 4 regimes:
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Sanchez-Gomez et al., Clim. Dyn., 2008
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F2: Temperature and precipitation SM|'||

= First run a smoother on the original fields to identify a large
scale signal

= Define the mesoscale signal as the difference between the
original fields and the large scale fields

= Define the 5 functions:

g; =R(p)" g, =R(M" 0g3= G(t)pCRu/RI\/I SE(p)

9. =0(t)"cru/RMSE(T) 95 = {L —( - /2)}

mod

The weight is given by
— * * * *
Wi=01"92"03"9s" Us
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* What is the mesoscale signal?
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= Calculate 9x9 gridpoint spatial
mean to get "large-scale”
signal.

= Subtract the "large-scale”
signal from the total field to
get the "'mesoscale” signal

= Particularly orographic
features stands out. But also
some coastal areas and large
lakes

Coppola et al., Clim. Res. Accepted for publication
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F3: PDFs of daily and monthly
temperature and precipitation SM|'||
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The skill score metric for daily data
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FiG. 3. Diagrams of modeled vs observed PDF illustrating
the total skill score in (a) a near-perfect skill score test (0.9) and
(b) a very poor skill score (0.02).

Perkins et al., J. Clim., 20, 2007



- Skill scores based on daily data
e  for winter T_._ SMHI
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Kjellstrom et al., Clim. Res. Accepted for publication



An alternative skill score metric for
* *ENSEMBLES™ % compari“g CDFS mHI
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e Comparing two different metrics for SMHI
it calculating skill scores

= Perkins (cumulative 1r 011 05 072 01 039 065 068 069 0.53
minimum) — unfilled
bars
0.8f
m  Sanchez (5 aspects
of CDF match) —
colored bars 2 0.6
= Absolute numbers @
are very different 2 04l
= Ordering of RCMs
differ
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Kjellstrom et al., Clim. Res. accepted for publication



F4: Temperature and precipitation

L SMHI

= Biases in extreme percentiles for temperature
and precipitation are first calculated (99., 99.9,
99.99, 99.999 %)

= Biases (B) are then turned into weights (W) using

an asymmetric transfer function
08
B= 1oo{i - 1}
]Dobs + 0.6
g
= 04}
W =1+ B/100, B <0
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Lenderink., Clim. Res. accepted for publication



Biases in DJF extreme precipitation SM|-||

99.9 percentile e = Wet biases compared to
) [or E-OBS in most but not
all RCMs

= The spread between
RCMs grow the further
to the "wet side” one
looks
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Kjellstrom et al., Clim. Res.
Lenderink., Clim. Res. accepted for publication accepted for publication
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g™ F5: Temperature trends SMHI

= Linear temperature trends for the period 1961-2000 are calculated
for observations and simulations

V., =a+pt +r,

= The trends are then turned into skill scores (or weights) using the

formula . ‘IB_IBREF‘
Z +/8_IBREF‘

( Is a scaling parameter that determines the spread between the best/worst model

=  Annual and seasonal values are combined using

S ombined = 05* SYear T 0125* (SDJF T SJJA t SI\/IAM t SSON)

C

Lorenz and Jacob, Clim. Res. submitted



s What does the trends look like? SMHI

Annual mean temperature in "France”
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Lorenz and Jacob, Clim. Res. submitted
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S F6: Temperature and precipitation
wld annual cycle SMHI

The Alpine region

= The weight depends on the model skill in
reproducing amplitude and phase of the annual

cycle
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R=Correlation (Phase)
o=Ratio simulated/observed STD (magnitude)

Halenka et al., Clim. Res. submitted
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WO How to combine this lot? SMHI

= Six metrics were identified (based on ERA40-driven runs)

F1: Large scale circulation and weather regimes (CNRM)

F2: Temperature and precipitation meso-scale signal (ICTP)

F3: PDFs of daily precipitation and temperature (DMI, UCLM,SHMI)

F4: Temperature and precipitation extremes (KNMI: HC)

F5: Temperature trends (MPI)

F6: Temperature and precipitation annual cycle (CUNI)

6

N

" These were simply multiplied to yield the final weight \N\rcy ~ I_ll f i
1=

= A sensitivity study with a reduction in spread was performed (all single metric
F1-F6 were allowed to be equally important)

= An alternative approach was to base the weight on ranking in the different
metrics (F1-F6)
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WS Final weights SMI'“
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Christensen et al., Clim. Res. accepted for publication



* Ko

e Final considerations and
sl outstanding issues SMHI

= Skill scores differ between different RCMs for different regions, seasons and
variables

= Multiplicative metrics implies that the overall weight can be dominated by one
“outlier” metric. One may overcome this problem by

=  Combine the metrics in different ways (addition rather than multiplication)
= Adopt different metrics for different variables
= Weight differently each metric
= Normalize the metric by the inter-model spread
= |arge subjective component of the approach

= The derived weights are to be used for the whole ensemble as they are
derived relative to each other

=  May be necessary to calculate other weights for certain impact studies
=  When run with LBCs from GCMs also the GCMs could/should be weighted

A number of papers describing this work will appear in a special issue in
Climate Research in late 2010 or early 2011
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Does it matter?

Seasonal mean statistics

OBS

T I [

Unweighted mean

Weighted mean

(MAE — mean absolute error, RMSE — root mean square error, Areal fraction where MAE decreases)

Bold face indicates

unweighted means

Variable MAE RMSE Areal fraction

P (I1JA) 0.292/0.286 0.565/0.543 0.55

P (DJF) 0.372/0.377 0.455/0.465 0.53

Tom (JJA) 0.740/0.824 0.928/1.018 0.74 improvem ents
Tom (DJF) 1.049/0.985 1.452/1.407 0.34 com pared to
Niot (JTA) 10.60/11.10 12.87/13.33 0.63

Niot (DJF) 7.34/6.08 7.97/7.70 0.45

Christensen et al.,

Clim. Res. accepted for publication



