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Stockholm in summer today




Stockholm in summer 20 thousands year ago




May 2008, near Barcelona October 2009




-How the climate has changed in the past

-External drivers of climate change

-Climate models, climate projection




Th e |aSt mi I I IoNn ye ars hlal varitins caie iiankwitth cycles seem to have triggered the beginning and end of many ice ages, but they cannot explain
(almost)

the full extent of the temperature changes (top). Ice core records suggest (0, helped amplify the changes (middle)

' Rate of change of global ice volume (Roe 20068) @ Solar energy variation at 65 degrees north during June (W/m?)
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Scotland glacier remnants



Reconstructed Northern Hemisphere temperatures in thepast two millennia

Medieval Warm Period ->Little Ice Age ->Recent Warmng

Proxy Record Locations: AD 1000

NoatHERN HEMIsPHERE TEMPERATURE RECONSTRUCTIONS
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Global average temperature 1850-2009

Met Ofhce

Based on Brohan et al. 2006
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M T Causes of externatlimate variations ﬁSS

uropean Climate

Main climate forcings in the period  7000BP to present are:

-Orbital forcing, due to slow changes in the Earth's orbital parameters. The precession
of the perihelion (period ca. 19000 years), obliquity (period ca. 40000 years) and
eccentricity (period ca. 100000 years). This forcing can be accurately calculated.

-C0O2 and CH4 concentrations. Derived from the concentrations in air bubbles trapped

in ice cores

-Intrinsic solar irradiance, caused by internal solar dynamics. Derived from
concentrations of the isotopes C14 and BelO in ice cores. Produced by cosmic rays,
their production rate is modulated by the solar open magnetic field

-Volcanic forcing, caused by the production of stratospheric aerosols from sulphate
volcanic eruptions
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Shortwave radiative forcing
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External forcings of 20" century climate change (without volcanoes)

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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Total anthropogenic forcing in 2100 : 6.7 (4.2-9)w/m2




The greenhouse effect

The radiation balance of the Earth

Units Wm-2
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The greenhouse effect

The radiation nalance of the Earth

Units Wm-2

Reflected Solar Incoming Outgoing

107\ ' Radiation Solar Longwave
107 Wm 2 Radiation Radiation
342 Wm ™2 2

Reflected by Clouds,

Aerosol and
Atmosphere Emitted by

Atmosphere 165

\ Absorbed by

67 Atmosphere

transpiration Absorbed by Surface-n.._____q__




The Earth has multiple ways to react,
and to simulate this reaction iIs difficult

The radiation balance of the Earth

Units Wm-=

107 Radiation

Reflected Solar Incoming 235 Outgoing
342 Solar Longwave
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-Increase surface
temperature

-Increase
evaporation

-Increase
cloudiness

All simultaneously




Some important climate feedbacks+,-,uncertain)

Black-body: increased temperatures increase the outwdrlong-wave emission

Water vapor feedback Warmer ocean temperatures increase evaporation
-> atmospheric humidity -> water vapor greenhouse forcing

Cloud feedback warmer temperatures change cloud cover ->
short wave and long wave radiation forcing . Sign depends on cloud type, cloud location

Surface albedo warmer temperatures melt snow and ice -> albedo decrease

Lapse-rate feedback decreased vertical temperature profile decrease the atmospheric
greenhouse gas forcing
Many other feedbacks involve vegetation, soil moisture, oceanic circulation, carbon

cycle, etc
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The complexity of the climate system




Equation state ~
PV=nRT
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i +0 Conservation of
P energy

ow - .

5= —V-v  Conservation of

Mass




Structure of a General Circulation
Mode
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illennium

Climate models

European Climate

Alwayswork in progress....

View from

German Climate Computing Centre,
Hamburg




What is (in) a climate model?

A computer program (0.5 mill pages) that was writt@ to represent:
-air flows from high pressure to low pressure
-the Earth is round and rotates
-hot air is lighter than cold air
-solar radiation is absorbed and reflected by all raterials
-Infrared radiation is absorbed and emitted by allmaterials
-water vapor condenses below certain relative humity threshold,
clouds are formed. And it may rain

-Warm water warms the air, warm air warms the water surface
-Rain makes sea water fresher, evaporation makesagater saltier

-water masses flow from high pressure to low pressel
-winds exert a drag on ocean surface. currents ames
-warm water is lighter than cold water

-salt water is heavier than fresh water



Mean annual near surface temperature

Example of output of a
climate model

Mean annual precipitation s

imulated by the climate model ECHO-G

210 220 230 240 250 260 270 280 290 300 310 Kel

Complete output is similar to
that of a weather prediction model:

3-d T, 3-d wind, 3-d moisture,
3-d cloudiness, precipitation,

A very complete,global , huge data s¢




Temperature anomaly (°C)
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Climate models replicate
the observed global T evolution
using observed forcings

-Uncertainty in aerolsol forcing
-Different climate model sensitivity

GroeaL anD ConTiNENTAL TEMPERATURE CHANGE

Vear

Global Ocean

=
i

o
=

Temperature anomaly (*C)
Temperature anomaly (*C)
Temparature anomaly (*C}

=
T ———

§ Y PR e

'§"_

L I
1950 2000 1950
Year: Yoear

models using only natural forcings — observations

maodels using both natural and anthropogenic forcings




Some numbers of climate models

- Spectral (spherical harmonics) or finite differenes schemes

-Fortran code — with some pieces of C code-
5x1C lines

-On non-massive parallel machines (fOnodes),

model -year takes ~ 4 hours

-Size of model output

GB per model-year

-Typical length of simulations:

100-1000 years




Where do the limitations of climate models lie ?




European part of the land-sea mask for different T-model resolutions

a) T21 b) T42
' | | ' |




Dynamical atmospheric processes
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Dynamical atmospheric processes represented in aofpal climate model
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Important examples of parametrizations in a climatemodel
(atmospheric sub-model)

Table I Some model parameters perturbed by Murphy ez al. (2004).

Parameter Physical process Values used

Low Middle High
Droplet to rain conversion rate (s™) Cloud 0.5x 107 1.0 x 107 40 x 107
Relative humidity for cloud formation Cloud 0.6 0.7 09
Cloud fraction at saturation (free trop.) Cloud 0.5 0.7 0.8
Entrainment rate coefficient Convection 0.6 3.0 9.0
Time-scale for destruction of CAPE (h) Convection 1.0 20 40
Effective radius of ice particles (um) Radiation 25 30 40
Diffusion e-folding time (h) Dynamics 6 12 A4
Roughness length parameter (Charnock) Boundary 0.012 0.016 0.020
Stomatal conductance dependent on CO, Land Off - On
Ocean-to-ice heat diffusion coefficient (m* s7) Sea ice 25x107° 1.0 x 107 38 x 107

A representative list of the model parameters perturbed by Murphy ef al. (2004) together with the physical process they are associated with and

the perturbed values used.



Dynamical oceanic processes
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Dynamical oceanic processes represented in a glolwhimate model
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Major conseguence of limited resolution : clouds

» grid boxes are typically 250 km clouds and
wide and 1 km high small-scale
« processes important for cloud circulations

formation happen at much
smaller scales

* it is very difficult to

represent effects of
clouds and small 1 y -

scale processes only  1km (L

in terms of grid box |

e ’

— 250 KM ——




About 65% of the Earth surface is covered by cloudat any time
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Types of clouds and its radiative properties

clrrus clouds




Clouds: the known unknown
largest source of uncertainty in climate projectiors

2XCO, Sensitivity [K]
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Kelvin

Uncertainty due to the unknown initial conditions

Stockholm January-April air temperature

31-year running means
deviations from 1829-1929 meann
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Sources of uncertainty in climate projections

Structural uncertainty: Is the climate model 'correct’

Use many good climate models

Parametrical uncertainty : is the parametrization arrect

Use many good different parametrizations

Uncertainty in the initial conditions

Use many different initial conditions

Ensemble of simulations







Climate projections:assuming scenarios for future missions
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Kelvin
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Essentlal IPCC climate prOJectlonq
DJF Precipaion_ A1E; 2080200
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Surface temperature Stronger warming in winter, high latitudes and over the continents

Precipitation: increase at high latitudes, decreases in the subpis, more uncertain




Kelvin

Decadal mean temperatures in Scandinavia
deviations from 2000-2010 mean
TPCC AR4 models, scenario AlB

11-year running mean
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Estimating uncertainty...
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