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Abstract Models that can project ecosystem dynamics

under changing environmental conditions are in high

demand. The application of such models, however, requires

model validation together with analyses of model uncer-

tainties, which are both often overlooked. We carried out a

simplified model uncertainty and sensitivity analysis on an

Ecopath with Ecosim food-web model of the Baltic Proper

(BaltProWeb) and found the model sensitive to both vari-

ations in the input data of pre-identified key groups and

environmental forcing. Model uncertainties grew particu-

larly high in future climate change scenarios. For example,

cod fishery recommendations that resulted in viable stocks

in the original model failed after data uncertainties were

introduced. In addition, addressing the trophic control

dynamics produced by the food-web model proved as a

useful tool for both model validation, and for studying the

food-web function. These results indicate that presenting

model uncertainties is necessary to alleviate ecological

surprises in marine ecosystem management.
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INTRODUCTION

The challenge of global climate change in combination

with the growing needs for marine resources such as fish

(Jackson et al. 2001) have created a high demand for

ecological models that can produce information relevant

for ecosystem-based management. While these models can

be powerful tools, they are always simplifications of real-

ity, with several unknowns and caveats (Hastings 1990; Li

and Wu 2006). Yet model uncertainties are not standardly

addressed in often complex ecosystem models (Planque

et al. 2011).

Ecological models are subject to uncertainty in the

model structure and input data (Beck 1987; Li and Wu

2006; Turley and Ford 2009). The structural model

uncertainty is rather seldom studied, and in food-web

models this has mainly been addressed by comparing

models with different levels of complexity (Vichi et al.

2003; Brown et al. 2010). Uncertainties originating from

the input data are studied more often, and several model

uncertainty and sensitivity analysis methods are available.

The Monte Carlo random parameter search procedure

(Waller et al. 2003) and the Extended Fourier Amplitude

Sensitivity Test (Saltelli et al. 1999) are examples of

comprehensive stochastic methods. However, these require

a vast number of repeated model runs and resource limi-

tation may prevent their implementation on complex

models. As an alternative, meta-modeling approaches,

capable of estimating error propagation from data to model

uncertainty with reduced computational cost exist (Scavia

et al. 1981a, b; Ratto et al. 2007). More recently, also

Bayesian uncertainty analyses have been applied to eco-

system models (Mäntyniemi et al. 2009).

In the ECOSUPPORT project (Meier et al. 2012), we

simulate for the first time how the combined changes in

future climate, fishery, and nutrient loads may affect the

Baltic Sea food-web dynamics, using the open Baltic Sea

Ecopath with Ecosim food-web model BaltProWeb

(Tomczak et al. 2012, but see Lindegren et al. [2010] for

fishery and climate effects on the future of the Baltic cod).

To ensure the usability of such projections, information
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about model capabilities and limitations, i.e., model

uncertainty, is needed. Previously, only few uncertainty or

sensitivity studies have been applied on Ecopath with

Ecosim (EwE) models (Aydin et al. 2005; Bundy 2005;

Coll et al. 2008; Walters et al. 2008; Rochette et al. 2009;

Morissette et al. 2010), regardless that EwE is a world-

wide popular approach to simulate aquatic food-webs

(Fulton 2010). EwE has some built-in model uncertainty

routines. For example, probability estimates of all input

data can be estimated, based on qualitative information

about data reliability (pedigree tool). This information can

then be used to build a mass-balance Ecopath model

(Christensen and Walters 2004). Also, a Monte Carlo

routine is available for testing Ecosim model uncertainty

and sensitivity to parameterization, or to optimize the

Ecopath input for improved Ecosim model fit (Christensen

et al. 2008). However, at the time of this study these tools

were not fully functional with models that accommodate

age-structured groups (multi-stanza in EwE).

In this study, a simplified model uncertainty and sensi-

tivity analysis was applied on the BaltProWeb model. We

use the term ‘‘model uncertainty’’ to describe the variation

in the model results caused by the uncertainties, or varia-

tion, in the model input data and ‘‘model sensitivity’’ to

describe the relative effect that a known change in a single

input/forcing has on the model results. First, we identified

the groups that the model is most sensitive to, defined

uncertainty proxies for their model input biomasses and

then studied resulting model uncertainty together with

model sensitivity. Furthermore, the potential uncertainty

under different future conditions was tested with different

fishery and climate scenarios. In addition, we addressed

model sensitivity to changes in environmental forcing, and

studied the combinations of trophic control that were

modeled as a result of model fitting to data.

MATERIALS AND METHODS

Study Area

The semi-enclosed Baltic Sea is one of the world’s largest

brackish water ecosystems (Leppäranta and Myrberg

2009). It has a low biodiversity (Ojaveer et al. 2010) and,

due to low salinity and large spatial and temporal gradients

in environmental conditions, many Baltic Sea organism

groups live close to their physiological limits (Remane

1934). The food-web model used in this study is parame-

terized to the Baltic proper conditions, i.e., the central

basin of the Baltic Sea. Baltic proper food-web dynamics

are well studied and in the past, fishery, climate, and high

nutrient inputs have caused ecosystem-wide changes, i.e.,

regime shifts in the system (Österblom et al. 2007;

Möllmann et al. 2008). The most recent shift took place in

the late 1980s. It was initiated by changes in climate and

fishery and resulted in low cod Gadus morhua stock, highly

increased abundance of planktivore sprat Sprattus sprattus

and a changed zooplankton composition (Casini et al.

2008; Möllmann et al. 2008, 2009).

Modeling Approach

The BaltProWeb food-web model (Tomczak et al. 2012)

builds on EwE, which is a widely used software package

developed for modeling trophic flows within aquatic eco-

systems (Christensen and Walters 2004, Christensen et al.

2008). The model has 22 functional groups (described in

Tomczak et al. 2012) and comprises a mass-balance model

(Ecopath), balanced for the year 1974, and a time-dynamic

(1974–2006) simulation model (Ecosim).

A mass-balance Ecopath equation, which describes the

production of a group (i) eaten by predators (j, where j = 1,

…, n) and/or exploited by fishery, forms the initial condi-

tions for an EwE model (Polovina 1984; Christensen and

Pauly 1992) (Eq. 1, excluding migration)

Bi �
P

B

� �
i

¼
Xn

j¼1

C

B

� �
j

� Bj � dietij þ Fi � Bi

þM0i � Bi þ BAi; ð1Þ

where Bi is the biomass, (P/B)i the annual production per

biomass ratio, Fi is the fishing mortality, M0i the predation

independent natural mortality rate, and BAi the biomass

accumulation of prey i. (C/B)j is the annual consumption per

biomass ratio, Bj is the biomass, and dietij the proportion of

i in the diet of predator j. The initial parameterization of Bi is

addressed in this uncertainty and sensitivity analysis.

In the time-dynamic Ecosim, biomass changes are esti-

mated by coupled differential equations (Eq. 2) that are

derived from Eq. 1

dBi

dt
¼ gi

X
j

Cji �
X

j

Cij � Fi þM0ið Þ � Bi; ð2Þ

where gi is the net growth efficiency and
P

j Cji the total

food consumption of i.
P

j Cij is the total biomass of

i predated.

The description of trophic interactions between func-

tional groups is based on a foraging arena theory according

to which each prey population is split into a component that

is vulnerable and a component that is invulnerable to pre-

dation (Walters et al. 1997; Ahrens et al. 2012). The rate at

which the prey can move between these two components

determines the predation rates on a particular prey popu-

lation and is in Ecosim determined by a vulnerability (v)

parameter. If v is high ([2), the prey biomass vulnerable to

predation is, rapidly after being depleted, replaced from the
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invulnerable component and predation control is top-down.

If v is low (\2), the replacement of the vulnerable biomass

is slow and the predation control is bottom-up. The total

amount of prey (i) consumed by predator (j) is estimated by

Eq. 3 (in simplified form)

Cij ¼
aij � vij � Bi � Bj

2vij þ aij � Bj
; ð3Þ

where Cij is the total consumption of i by j, aij the effective

search rate for i by j, and vij vulnerability of i to predation

by j. Bi and Bj as in Eq. 1.

An automated Ecosim calibration procedure was used to

test for different combinations of vs for 20 predator–prey

relationships that the model is most sensitive to, while all

other vs were set for the default value 2, i.e., mixed pre-

dation control. The combination of vs that resulted in the

best model, i.e., the lowest sum of squares (SS) of model

deviation from the observations for the 1974–2006, was

chosen. The model was driven by fishing mortality of cod,

herring, and sprat, environmental forcing (introduced

below) and fish reproduction time-series. The same cali-

bration data as in Tomczak et al. (2012) were used.

Simplified Model Uncertainty and Sensitivity

Analysis

The model uncertainty and sensitivity analysis was carried

out in several steps and is presented in Fig. 1.

Key Groups and Variation in Their Input Biomass Data

Step 1. First, the key groups, i.e., the groups that have the

largest effects on the ecosystem (here the model output),

were identified using the relative total impact (RTI) index

of the EwE software (version 6). Our definition of key

groups does not exclude groups with higher biomass, and

hence the requirements for actual keystone species, as

discussed, e.g., in Power et al. (1996), may be compro-

mised. RTI is calculated from the mixed trophic impact

(MTI) (Eqs. 4 and 5, Leontief 1951; Ulanowicz and Puccia

1990; Christensen et al. 2008), which describes the direct

and indirect effects that a very small increase in the bio-

mass of impacting group (j) would have on the biomass of

impacted group (i) and is estimated for each pair of func-

tional groups

RTI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i 6¼j
MTI2

ji

r
; ð4Þ

MTIji ¼ DCji � FCij; ð5Þ

where the diet composition term DCji describes how much

i contributes to the diet of j. The term FCij describes the

proportion of predation on i that is due to j. Pre-identifi-

cation of some of the most important model parameters

allows targeting the analysis on the groups that the model is

most sensitive to and has previously been used in the

sensitivity and uncertainty analysis of other food-web

modeling approaches (e.g. Ciavatta et al. 2009).

Step 2. Here, the level of uncertainty in the Ecopath

biomass (B) input of key groups was estimated. The

coefficients of variation (CV) of biomass data (Table 1)

were used as uncertainty proxies, and the possible input

ranges for the five highest ranking key groups were cal-

culated (B1974 ± 2 9 CV 9 B1974). The CV values for all

zooplankton and macrozoobenthos were calculated from

the annual biomass averages for 1974–1978 to be consis-

tent with the way how the original Ecopath input B were

calculated, i.e., the 5-year (1974–1978) medians of annu-

ally averaged biomass data. For sprat and cod, both the CV

values and the biomass data are from the ICES Baltic Sea

fish stock assessment report (ICES 2008).

Model Uncertainty Caused by the Variation in Input

Biomass Data

Step 3. The time-dynamic Ecosim model uncertainty

related to the input biomass (B) was tested by replacing the

Ecopath B of key groups with the upper and lower biomass

limits from the potential biomass ranges (step 2). To

entangle how sensitive the model was to changes in indi-

vidual key groups, the biomass changes were made one-at-

a-time, and the original biomass input values of all other

groups were left unchanged (Hamby 1994). In cases where

Ecopath was not mass-balanced with the new Ecopath

B value, the lowest/highest value that enabled mass-bal-

ance was used. Ecosim was recalibrated after each biomass

change, using the same forcing and reference data as in the

original model. This resulted in ten new calibrated Ecosim

models (models 1–10). The group (mysids and macrozoo-

benthos) and aggregated group (phytoplankton, zooplank-

ton, clupeids (herring ? sprat), cod (2–3 years ? adult))

specific fits, i.e., SS, for the ten new models are presented

as the percentage change from the corresponding fits in the

original model. These results were further normalized to

describe the effect of 10 % change in the original Ecopath

B of each key group.

Trophic control was studied in detail in selected pred-

ator–prey relationships and compared between the models

1–10 and the original model. We assumed top-down con-

trol when there was a positive relationship between the

predator biomass and the amount of prey consumed (Cij in

Eq. 3) and bottom-up control when there was a positive

relationship between the prey biomass and the amount

of prey consumed. The type, strength, and statistical
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significance of such control were analyzed using linear

regression analysis. In the BaltProWeb model, trophic

control is realized as the result of model fitting to data, as

often is the case with EwE models. Hence, studying the

plausibility of trophic control mechanisms modeled is an

important method of model validation.

Alternative Environmental Forcing of the Past

Step 4. In the BaltProWeb model, direct environmental

forcing is applied on six functional groups. Cod reproduc-

tive volume (RV), i.e., the volume of water with suitable

salinity ([11 psu) and oxygen (O2, [2 ml l-1) conditions

for cod reproduction (Plikshs et al. 1993), and August sea

surface (0–10 m) temperature force cod and sprat repro-

duction, respectively. Spring (March–May) upper water-

column (0–50 m) temperature drives changes in the prey

vulnerability (vij in Eq. 3) to Acartia spp. and Temora lon-

gicornis predation. Hypoxic area (O2\2 ml l-1) is

assigned a negative effect on prey vulnerability to predation

by macrozoobenthos and mysids. For more detailed

descriptions, see Tomczak et al. (2012).

In the original model, forcing functions were obtained

by normalizing the observed environmental time-series

with the 1974 value. In this study, we replaced every ori-

ginal forcing with time-series of similar shape, but

increased/decreased the annual deviation from the year

1974 value by 10 and 20 % (Fig. 2a). Only one forcing

time-series was changed at a time and the model was re-

calibrated after each change.

How Uncertain Are Climate and Fishery-Driven Future

Food-Web Projections Based on Changes in Key Group

Biomasses?

Step 5. The original model and the models 1–10 were used

to study how the assumed uncertainties in the input bio-

masses of key groups may translate in model uncertainties

in future (2006–2100) projections. Three future scenarios

were run with all models: (1) cod business as usual fishery

scenario (BAU, fishing mortality (F) = 1.08), (2) cod

recovery plan fishery scenario (F03, F = 0.3 as adopted by

the EU Council [2007]), and (3) cod recovery plan com-

bined with climate change (F03 ? C), i.e., A1B1 emission

scenario (IPCC 2007). The F for cod in the BAU scenario

is the average F for in 1996–2005 (ICES 2008). In all

scenarios, the future F for sprat and herring represents the

calculated average of F for 1996–2005 (0.36 and 0.34,

Fig. 1 A conceptual diagram of the simplified model uncertainty and sensitivity analysis method used. Steps 1–5 represent different stages of the

analysis and are presented in detail in ‘‘Materials and Methods’’
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respectively). The environmental time-series used in the

F03 ? C scenario are simulations from the biogeochemical

model, Baltic Sea Long Term large-Scale Eutrophication

Model (BALTSEM; Gustafsson 2000, 2003). In our anal-

ysis, the type of climate scenario was not so important, as

the main aim was to demonstrate the importance of climate

forcing in general for the food-web model simulations. In

both ‘‘only-fishery’’ scenarios, the future (2006–2100)

environmental/climate forcing was calculated as the aver-

age in the last 5 years of the model calibration period

(2002–2006) (Fig. S1, Electronic supplementary material).

RESULTS

Key Groups and Variation in Their Input Biomass

Data

Steps 1 and 2. The BaltProWeb model is, in decreasing

order, most sensitive to biomass changes in 2–3 years old

cod (from now on referred as small cod), adult sprat,

macrozoobenthos, Pseudocalanus acuspes, and other

mesozooplankton (excluding P. acuspes, Acartia spp. and

T. longicornis) (Table 1). The biomass CV values for the

Fig. 2 a Alternative climate forcing functions used in the model

calibration, b deviations in the total model fits (i.e., sum of squares

(SS), indicated by numbers above bars) and group-specific fits from

the original model caused by one-at-a-time changes, i.e., ±10 and

±20 % deviation, in environmental forcing [panels from left: changes

in cod reproductive volume, August temperature, spring temperature,

and hypoxic area (inverted)]

Table 1 Key functional groups with ecosystem structuring role as

identified by the Relative Trophic Impact (RTI) index; also CV values

for input biomass (B) data, original Ecopath B input values, and lower

and upper B limits (as suggested by the CV values calculated from the

biomass data)

Group RTI-index CV B lower limit

(t km-2)

Ecopath B
(t km-2)

B upper limit

(t km-2)

Cod 2, 3 1 0.22 0.57 (0.98) 1.02 1.46

Adult sprat 0.91 0.64 0 (3.22) 4.21 9.61 (4.39)

Macrozoobenthos 0.71 0.95 0 (2.55) 27.30 79.17 (35.86)

P. acuspes 0.69 0.19 2.72 4.39 6.058 (5.26)

Other mesozooplankton 0.63 0.73 0 (0.31) 4.00 9.84 (4.11)

Adult cod 0.50 – – 0.49 –

Mysids 0.49 – – 2.04 –

Herring 0, 1, 2 0.49 – – 3.97 –

T. longicornis 0.46 – – 1.90 –

Other phytoplankton 0.45 – – 4.50 –

The value in the brackets is the upper/lower B limit that was able to balance Ecopath, in case the B values suggested by CVs were incapable of

doing that
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above-mentioned key groups ranged from 0.19 to 0.95. The

highest CV value was calculated for macrozoobenthos, a

group for which we have access to scarce data with high

spatial variability. The lowest biomass CV was obtained

for P. acuspes. For all key groups, the biomass range that

resulted in a mass-balanced Ecopath model was smaller

than the range indicated by the CV values.

Model Uncertainty Caused by the Variation in Input

Biomass Data

Step 3. The differences in the total model fit (measured in

SS) between the ten new recalibrated models and the ori-

ginal model are between -0.1 % (model 7) and 28.5 %

(model 5) (Table 2, including model abbreviations). In

most groups, excluding phytoplankton, the highest relative

change in the model fit was caused by changes in the small

cod input biomass. On average, clupeids and cod were the

groups most affected by decreases and increases in the

biomasses of other key groups (6.2 % and 5.0 % per 10 %

change, respectively). The model fit of cod worsened par-

ticularly when the macrozoobenthos biomass was

decreased, but was also clearly affected by changes in the

lower trophic level groups such as P. acuspes and other

mesozooplankton. The fit of clupeids was primarily wors-

ened by changes, especially increase, in the cod biomass.

The biomass dynamics (1974–2006) of cod, sprat, and

P. acuspes, which are considered among the most impor-

tant components regarding the Baltic Proper food-web

function (e.g., Casini et al. 2009), were studied in all ten

new models in relation to the original model (Fig. 3).

Changes in the initial conditions of 1974, i.e., Ecopath B,

produced a wide range of biomass estimates in all three

groups. Some of the largest deviations from the original

model were caused by the large variations in the other

mesozooplankton and macrozoobenthos biomasses (see

also Table 2 for the percentage changes in the total model

fit (SS) in models 5 and 9).

Table 2 Changes in the model fit (sum of squares (SS)) per 10 % change in the Ecopath biomass (B) input for key groups

Group Original Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 IDI mean

SS Cod Cod Sprat Sprat mzb mzb Pseudo Pseudo ozpl ozpl

Low (-) High (?) Low (-) High (?) Low (-) High (?) Low (-) High (?) Low (-) High (?)

Phytoplankton 4.01 1.91 0.00 -2.33 -0.64 -0.91 0.03 -1.25 -0.98 -0.87 0.00 0.89

Zooplankton 24.01 2.23 -7.54 -1.04 -0.94 0.01 0.06 -1.18 -2.01 0.59 -0.02 1.18

Clupeids 21.95 8.48 44.15 15.77 0.66 1.08 -0.01 3.16 1.75 3.54 0.00 6.22

Cod 11.48 49.98 71.08 2.74 6.93 18.85 0.68 -3.55 7.85 8.68 0.18 4.95

Benthos 14.16 3.42 9.54 2.88 0.54 -1.46 0.33 0.39 0.67 0.77 0.01 1.82

Mysids 34.18 -4.85 -2.46 -0.95 0.37 -0.16 0.03 -1.02 -0.67 -0.02 0.00 1.05

Total SS 143.21 148.94 156.71 160.38 147.55 184.09 145.29 143.03 150.49 177.87 143.58

% Change 4.00 9.43 11.99 3.03 28.54 1.45 -0.13 5.08 24.20 0.25

The change in the SS is the percentage change from the group-specific (some are aggregated groups) SS in the original model. The total SS and %

change in the total SS describe the realized values for models 1–10 (i.e., not recalculated per 10 % change). Note: the total SS also includes the

SS of catch and the mean changes (IDI) include only effects from the biomass changes of other key groups

Pseudo, Pseudocalanus acuspes; ozpl, other mesozooplankton; mzb, macrozoobenthos; ?, stands for testing the upper; -, the lower B limit

Fig. 3 Cod, sprat, and P. acuspes biomasses in the original model and models 1–10 (model abbreviations as in Table 2)
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Changes in Trophic Control

The overall trophic control between cod (adult ? small)

and sprat (adult ? juvenile) was mixed, both bottom-up

and top-down, in all models (Fig. 4, first column). Adult

cod consumption on adult sprat had a noisy, but statisti-

cally significant, signal of top-down control in models 5

and 9 (Fig. 4a, second panel). In the original model and

models 2 and 3, this relationship was strongly bottom-up

controlled (Fig. 4b, second panel; see also vulnerabilities).

The predation of juvenile sprat by small cod was top-down

controlled in most models (Fig. 4a, third panel). A signif-

icant negative biomass relationship was detected between

adult cod and adult sprat (Fig. 4c, second panel), as well as

cod (adult ? small) and all sprat in all models (Fig. 4c, first

panel). Between small cod and juvenile sprat, a significant

negative biomass relationship was found in the original

model and models 2 and 3 (Fig. 4c, third panel). The adult

sprat consumption on P. acuspes is primarily top-down

controlled, and this relationship is statistically significant,

in all models (Fig. 4a, fourth panel). In model 3, the top-

down control saturates after the sprat biomass reaches high

values (approx. above 4 t km-2). The dominant trend of the

biomass relationship between sprat and P. acuspes is

negative in all models (Fig. 4c, fourth panel), but in model

3 this negative relationship dissolves at lower P. acuspes

abundances. The slopes and statistical significance of all

relationships are shown in Table S1, Electronic supple-

mentary material. All in all, the overall trophic control

differed most from the original model in models 2, 3, 5,

and 9.

Alternative Environmental Forcing of the Past

Step 4. In general, changes in the environmental forcing

variables decreased the overall model fit in comparison to

the original model, with the exception of some negligible

improvements (Fig. 2b). The overall model fit was most

affected by changes in the cod reproductive volume (RV)

and spring temperature, and in both cases the model fit

decreased with increased deviation from the original

environmental forcing (Fig. 2b, first and third panel). The

largest decrease in the model fit (?30 in SS) was caused by

a 20 % increase in the cod RV deviation. When altering the

spring temperature, the highest decrease in the model fit

(?13 in SS) was caused by the 20 % decrease in the

deviation. Total model performance was least affected by

changes in August temperature, which forced sprat repro-

duction. Also, for August temperature and hypoxic area the

change in the total model fit was not always linearly related

to the magnitude of change in the forcing variables

(Fig. 2b, second and fourth panels). For example, a 10 %

deviation decrease in the hypoxic area forcing worsened

the model fit by 1.3 in SS, while a 20 % decrease lead to a

slightly improved model fit (-0.1 in SS), compared to the

original model. Across model simulations, forced by dif-

ferent environmental settings, the changes triggered in the

cod (small ? adult) biomass mostly contributed to changes

in the total model fit. The fits of cod and Acartia spp./T.

longicornis were most affected by changes in the envi-

ronmental time-series they were directly forced with, i.e.,

cod RV and spring temperature. The fits of sprat and P.

acuspes were more affected by indirect effects caused by

changes in the trophic interactions. The fit of Acartia sp./T.

longicornis was improved as a result of many changes in

the environmental forcing, even if the total model SS

increased. The fits of macrozoobenthos and mysids were

overall very little affected.

How Uncertain Are Climate and Fishery-Driven

Future Food-Web Projections?

Step 5. The future biomass estimates of cod increased as a

response to the decreased fishing pressure (from BAU to

F03) in the original model and most of the ten models

(Fig. 5a, columns BAU and F03). However, even in the

low fishing pressure scenario (F03), the future cod bio-

masses were as high as in the 1980s only in model 9. In all

scenarios, the majority of the biomass projections of the ten

new models were close to those of the original model.

However, the total range of biomass estimates was rather

large across all groups and scenarios being particularly

high when future climate change was accounted for

(Fig. 5a–c, column F03 ? C). For example, very high

biomasses of cod, sprat, and P. acuspes were estimated by

some models, while others projected biomasses close to

extinction. In the scenarios with no climate change the cod

biomasses projected by the original model were amongst

the lowest across models. In the climate change scenario,

some other models projected clearly lower future bio-

masses for cod than the original model.

DISCUSSION

Model Uncertainty Caused by Variations

in the Input Biomass Data

The BaltProWeb food-web model was most sensitive to

changes in the biomasses of cod and sprat. However, the

largest variations in the simulations were caused by the

relatively large uncertainty in the biomass data of macro-

zoobenthos and other mesozooplankton. Hence, particular

effort should be aimed to the data analysis and parame-

terization of these groups. Earlier publications have con-

cluded that the Ecopath with Ecosim models are very
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sensitive to changes in vulnerability settings that define the

type of trophic control for each predator–prey relationship

(e.g., Christensen and Walters 2004; Walters et al. 2008;

Brown et al. 2010). We used these vulnerability values

(v in Eq. 3) as free variables (Petersen 2000). This means

that the types of trophic control in the predator–prey rela-

tionships that the model is most sensitive to (either bottom-

up or top-down) were automatically estimated to best fit the

calibration data. By this approach we were able to define

what combinations of trophic control were realized in each

model and how possible differences affected model per-

formance. The initial intent was to use the trophic control

information to rule out some models as mechanistically

unrealistic, but in the end we were unable to exclude any of

the ten new models as being implausible. Consequently,

results from all models were considered in this uncertainty

and sensitivity analysis and their potential implications for

model application addressed.

Our approach had some limitations that may have

resulted in the underestimation of model uncertainty. The

Ecopath requirement for mass-balance constrained the

testing to smaller biomass ranges than indicated by the CV

values. Also, only extreme values (i.e., the highest/lowest

of the range) were tested for and changes were induced

one-at-a-time, instead of changing several parameters

simultaneously. Monte Carlo random sampling methods

Fig. 4 a Top-down trophic control, b bottom-up trophic control, and

c relationship between the predator and prey biomasses of cod (small

(2,3) ? adult (ad)) and sprat (juvenile (juv) ? adult), adult cod and

adult sprat, small cod and juvenile sprat, and adult sprat and

P. acuspes in the original model and models 2, 3, 5, and 9. The

vulnerability (v) values for each predator–prey relationship and model

are presented at the bottom of the graph. Note that cod

(small ? adult) and sprat (juvenile ? adult) are aggregated groups

and hence the v values for this predator–prey relationship are not

presented (B = biomass)
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that are commonly used to test for model sensitivity

(Turley and Ford 2009), would have allowed testing for

simultaneous random changes in input parameters.

A Monte Carlo routine is included in the Ecopath with

Ecosim, but is currently incapable to handle multi-stanza,

i.e., age-structured, groups and could therefore not be

applied in this study.

Food-Web Function

Previous studies (Casini et al. 2009; Möllmann et al. 2009)

add confidence to our results from the RTI analysis (step 1)

that indicated cod, sprat, and P. acuspes as having

important roles in the open Central Baltic Sea food-web. In

addition, macrozoobenthos has been described as an

important food source for cod, especially during the

beginning of the modeled time period (Uzars 1994) and the

other mesozooplankton group includes cladocerans that are

important summer prey for clupeids (Flinkman et al. 1992;

Möllmann et al. 2004; Casini et al. 2009).

Earlier, Libralato et al. (2006) have shown that the

Ecopath MTI matrix (Eq. 5), corresponds well with the

response of Ecosim model estimates. Our study that uses

the relative trophic impact (RTI, Eq. 4), also based on the

(a)

(b)

(c)

Fig. 5 The simulated biomasses of a adult cod, b adult sprat, and c P. acuspes in the BAU, F03, and F03 ? C future scenarios (see Fig. S1,

Electronic supplementary material for model abbreviations, B = biomass). Color coding of the different models as in Fig. 4
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MTI, agrees with their results. For example, both the RTI

and the Ecosim model sensitivity analysis (steps 3 and 4)

imply that cod is the most important food-web structuring

group in the Baltic Proper. In contrast to some previous

studies (Harvey 2003; Casini et al. 2009; Möllmann et al.

2009), however, our results do not readily support the

hypothesis that changes in the adult cod biomass directly

act as the foremost pelagic ecosystem structuring mecha-

nism. Most of our models, including the original, indicate

bottom-up control between sprat and adult cod (Fig. 4).

Yet in all models the small cod controls the biomass

development of both juvenile and adult sprat resulting in a

negative biomass relationship between adult cod and sprat.

If these dynamics were mechanistically true, young cod

may, under certain food-limited conditions, be capable of

controlling the growth of its own stock by limiting the

resources of adult cod. This would also suggest that,

irrespective of the high sprat abundances since the early

1990s, adult cod were on average close to the carrying

capacity concerning their prey adult sprat in 1974–2006.

Earlier, the sprat availability as cod prey has been ques-

tioned, e.g., by Neuenfeldt and Beyer (2006). However,

the age/stage specific cod–sprat dynamics indicated by the

models have not been observed in previous studies and

need to be further tested. In models 5 and 9, the adult cod

consumption on adult sprat showed a mixed or weak top-

down control, which coincides with the theory that a

combination of top-down and bottom-up trophic control is

a likely mechanism behind the past biomass relationship

observed between the adult cod and sprat (Casini et al.

2009). However, for both of these models, the fit to the

data was worse than that of the original model.

In most models, sprat controls the P. acuspes biomass,

which is in agreement with the findings of Möllmann et al.

(2009). The bottom-up, or mixed, control between sprat

and adult cod in combination with the top-down control

between sprat and the zooplankton P. acuspes would

indicate that sprat is able to control both its prey and pre-

dators. Such control by an intermediate trophic level group,

i.e., the wasp-waist control, has, for example, been

described in the North Sea, where the fishery-induced

changes have been suggested to control the herring bio-

mass and cascade both to herring prey (zooplankton) and

predators (seabirds) (Fauchald et al. 2011). Based on our

results, the possibility for such a control in the Baltic

Proper should be further studied.

The mixed trophic control, together with environmental

forcing, resulted in somewhat noisy signals in the trophic

control and the predator–prey biomass relationships across

models, which illustrates the importance of multiple drivers

in single predator–prey interactions. Further, the mis-

matches between the types of predation control and pred-

ator–prey biomass relationships (e.g., for the relationship

adult cod–adult sprat in Fig. 4, second column) provides an

example for challenges in using the relationship of mea-

sured biomasses alone as indicators of trophic control.

Environmental Forcing

Several studies recognize the importance of environmental

conditions for the functioning of the Baltic Sea food-web

(e.g., Alheit et al. 2005; Möllmann et al. 2008, Casini et al.

2009). In the BaltProWeb model, the environmental forc-

ing was used as anomalies from the 1974 values without

any weighting of the different time-series. Here, we altered

the strength of environmental forcing (step 4) and noticed

that the model fit was affected even by rather moderate

changes (Fig. 2). More importantly, changes in some model

simulations, were non-linear in relation to the changes in

the environmental forcing. Such unpredictability in model

behavior results from the differences in trophic control,

concomitant of refitting the model with new environmental

forcing. The relatively strong effect of some environmental

forcing, particularly the cod reproductive volume and

spring temperature, indicate that it is important to know the

group-specific responses to unit changes in relevant envi-

ronmental variables. However, if the automatic calibration

routine of Ecosim is used, the estimation of trophic control,

i.e., vulnerabilities, is affected by the environmental forc-

ing functions applied and thereby the implementation of

even well known predator–prey relationships can be

challenging.

Variations in Future Projections

Simulations of the future biomasses vary largely between

models 1–10 (step 5, Fig. 5). Some biomass estimates of

different models did overlap between different scenarios

resulting in similar results under different future condi-

tions. In many cases, the models with the most different

trophic control in the calibration period, in comparison to

the original model, also resulted in the most extreme bio-

mass estimates in the future scenarios. In the climate

change scenarios the biomass estimates of, e.g., cod were

extremely high in some models, while in other models cod

was driven near extinction. The large differences in future

model results demonstrate that simulations with rather

similar model fits (max. 29 % deviation from the original),

but differences in trophic control, can lead to very different

biomass projections. Hence, it is crucial to study the

plausibility of model dynamics beyond the model fit. Here,

for example we have studied the trophic control mecha-

nisms in different models. Such an approach may also be

the only validation method available in data poor systems,

or for models that require large data quantities in model
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calibration. In EwE models, for example, all available data

are often used in model calibration, leaving no independent

data sets available for model validation purposes.

Implications to Ecosystem Management

Even if the BaltProWeb model is not primarily intended as

a management tool, but for studying the food-web

dynamics under different conditions, this study does

illustrate the importance of accounting for the model

uncertainties, in particular if such models are used for

ecosystem management. The model was sensitive to both,

the uncertainties in the input data and changes in the cli-

mate forcing. Some alternative model projections even

indicated future extinctions of commercially important fish

species under cod fishery management plan, which resul-

ted in abundant fish stocks in the original model. Based on

these results we would motivate for presenting also the

alternative model projections, at least the extremes, caused

by model uncertainties whenever ecosystem models are

used in management. This would enable the decision

makers to evaluate the potential future outcome early in

cases where the observed biomasses start to follow an

alternative model path, instead of the original or average

trajectories, and allow them to adapt the management

accordingly. In addition, presenting the model uncertain-

ties provides information on the probability of certain

ecosystem conditions. In our analysis, the pre-identifica-

tion of the key groups allowed us to focus on a limited

number of parameters causing model uncertainty and

sensitivity. Using such simplified approaches may be one

solution in the attempt to mainstream the application of

model uncertainty studies, particularly if full uncertainty

and sensitivity analyses are not feasible due to resource

limitation. An aspect that our analysis has not focused on,

and which is hardly touched upon in the ecosystem

modeling work in general, is the possibility of extreme

events, such as extreme summers or sudden introduction

of invasive species, in the long-term projections of eco-

system dynamics. Together with other model uncertain-

ties, these extreme events are one of the key questions

when managing marine ecosystems in the face of global

climate change.
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Alheit, J., C. Möllmann, J. Dutz, G. Kornilovs, P. Loewe, V.

Mohrholz, and N. Wasmund. 2005. Synchronous ecological

regime shifts in the central Baltic and the North Sea in the late

1980s. ICES Journal of Marine Science 62: 1205–1215.

Aydin, K.Y., G.A. McFarlane, J.R. King, B.A. Megrey, and K.W.

Myers. 2005. Linking oceanic food webs to coastal production

and growth rates of Pacific salmon (Oncorhynchus spp.) using

models on three scales. Deep-Sea Research II 52: 757–780.

Beck, M.B. 1987. Water-quality modeling—A review of the analysis

of uncertainty. Water Resources Research 23: 1393–1442.

Brown, C.J., E.A. Fulton, A.J. Hobday, R.J. Matear, H.P. Possingham,

C. Bulman, V. Christensen, R.E. Forrest, et al. 2010. Effects of

climate-driven primary production change on marine food webs:

Implications for fisheries and conservation. Global Change
Biology 16: 1194–1212.

Bundy, A. 2005. Structure and functioning of the eastern Scotian

Shelf ecosystem before and after the collapse of groundfish

stocks in the early 1990s. Canadian Journal of Fisheries and
Aquatic Sciences 62: 1453–1473.

Casini, M., J. Hjelm, J.C. Molinero, J. Lovgren, M. Cardinale, V.

Bartolino, A. Belgrano, and G. Kornilovs. 2009. Trophic

cascades promote threshold-like shifts in pelagic marine eco-

systems. Proceedings of the National Academy of Sciences of the
United States of America 106: 197–202.

Casini, M., J. Lovgren, J. Hjelm, M. Cardinale, J.C. Molinero, and G.

Kornilovs. 2008. Multi-level trophic cascades in a heavily

exploited open marine ecosystem. Proceedings of the Royal
Society B-Biological Sciences 275: 1793–1801.

Christensen, V., C.J. Walters, D. Pauly, and R. Forrest. 2008. Ecopath
with Ecosim version 6. User Guide—November 2008. Lenfest

Ocean Futures Project.

Christensen, V., and D. Pauly. 1992. ECOPATH-II—A software for

balancing steady-state ecosystem models and calculating net-

work characteristics. Ecological Modelling 61: 169–185.

Christensen, V., and C.J. Walters. 2004. Ecopath with Ecosim:

Methods, capabilities and limitations. Ecological Modelling 172:

109–139.

Ciavatta, S., T. Lovato, M. Ratto, and R. Pastres. 2009. Global

uncertainty and sensitivity analysis of a food-web bioaccumu-

lation model. Environmental Toxicology and Chemistry 28:

718–732.
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Österblom, H., S. Hansson, U. Larsson, O. Hjerne, F. Wulff, R.

Elmgren, and C. Folke. 2007. Human-induced trophic cascades

and ecological regime shifts in the Baltic Sea. Ecosystems 10:

877–889.

Petersen, A.C. 2000. Philosophy of climate science. Bulletin of the
American Meteorological Society 81: 265–271.

Planque, B., E. Bellier, and C. Loots. 2011. Uncertainties in

projecting spatial distributions of marine populations. ICES
Journal of Marine Science 68: 1045–1050.

Plikshs, M., M. Kalejs, and G. Grauman. 1993. The influence of

environmental conditions and spawning stock size on the year

class strength of the Eastern Baltic cod. ICES CM 1993/J:22.

Polovina, J.J. 1984. Model of a coral-reef ecosystem.1. The Ecopath

model and its application to French Frigate shoals. Coral Reefs
3: 1–11.

Power, M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. Bond, L.S.

Mills, G. Daily, J.C. Castilla, J. Lubchenco, and R.T. Paine.

1996. Challenges in the quest for keystones. BioScience 46:

609–620.

Ratto, M., A. Pagano, and P. Young. 2007. State dependent parameter

metamodelling and sensitivity analysis. Computer Physics
Communications 177: 863–876.

Remane, A. 1934. Die Brackenwasserfauna. Zoologischer Anzeige 7:

34–74.

Rochette, S., J. Lobry, M. Lepage, and P. Boet. 2009. Dealing with

uncertainty in qualitative models with a semi-quantitative

approach based on simulations. Application to the Gironde

estuarine food web (France). Ecological Modelling 220: 122–132.

Saltelli, A., S. Tarantola, and K.P.S. Chan. 1999. A quantitative

model-independent method for global sensitivity analysis of

model output. Technometrics 41: 39–56.

Scavia, D., R.P. Canale, W.F. Powers, and J.L. Moody. 1981a. Variance

estimates for a dynamic eutrophication model of Saginaw Bay,

Lake Huron. Water Resources Research 17: 1115–1124.

Scavia, D., W.F. Powers, R.P. Canale, and J.L. Moody. 1981b.

Comparison of 1st-order error analysis and Monte-Carlo simu-

lation in time-dependent lake eutrophication models. Water
Resources Research 17: 1051–1059.

Tomczak, M.T., S. Niiranen, O. Hjerne, and T. Blenckner. 2012.

Ecosystem flow dynamics in the Baltic Proper—Using a multi-

trophic dataset as a basis for food-web modelling. Ecological
Modelling 230: 123–147.

Turley, M.C., and E.D. Ford. 2009. Definition and calculation of

uncertainty in ecological process models. Ecological Modelling
220: 1968–1983.

Ulanowicz, R.E., and C.J. Puccia. 1990. Mixed trophic impacts in

ecosystems. Coenoses 5: 7–16.

Uzars, D. 1994. Feeding of cod (Gadus morhua callarias L.) in the

central Baltic in relation to environmental changes. ICES Marine
Science Symposia 198: 612–623.

Vichi, M., W. May, and A. Navarra. 2003. Response of a complex

ecosystem model of the northern Adriatic Sea to a regional

climate change scenario. Climate Research 24: 141–158.

Waller, L.A., D. Smith, J.E. Childs, and L.A. Real. 2003. Monte Carlo

assessments of goodness-of-fit for ecological simulation models.

Ecological Modelling 164: 49–63.

Walters, C., V. Christensen, and D. Pauly. 1997. Structuring dynamic

models of exploited ecosystems from trophic mass-balance

assessments. Reviews in Fish Biology and Fisheries 7: 139–172.

Walters, C., S.J.D. Martell, V. Christensen, and B. Mahmoudi. 2008.

An ecosim model for exploring Gulf of Mexico ecosystem

management options: Implications of including multistanza life-

history models for policy predictions. Bulletin of Marine Science
83: 251–271.

624 AMBIO 2012, 41:613–625

123
� Royal Swedish Academy of Sciences 2012

www.kva.se/en

http://dx.doi.org/10.1007/s13280-012-0320-3
http://dx.doi.org/10.1371/journal.pone.0012467


AUTHOR BIOGRAPHIES

Susa Niiranen (&) is a PhD candidate at the Baltic Nest Institute and

the Department of Systems Ecology of the Stockholm University. Her

research is mainly focused on the Baltic Sea food-web dynamics and

their response to environmental change.

Address: Baltic Nest Institute, Stockholm Resilience Centre, Stock-

holm University, 106 91 Stockholm, Sweden.

e-mail: susa.niiranen@stockholmresilience.su.se

Thorsten Blenckner is a senior scientist at the Baltic Nest Institute

and the Department of Systems Ecology of the Stockholm University.

His research interests include food-web dynamics, multiple stressor

effects on ecosystems and climate change research.

Address: Baltic Nest Institute, Stockholm Resilience Centre, Stock-

holm University, 106 91 Stockholm, Sweden.

e-mail: thorsten.blenckner@stockholmresilience.su.se

Olle Hjerne is an associate professor at the Department of Systems

Ecology at Stockholm University. His research is mainly focused on

Baltic Sea food-web dynamics, spanning from eutrophication, fish

and fisheries management to seals.

Address: Department of Systems Ecology, Stockholm University, 106

91 Stockholm, Sweden.

e-mail: olle@ecology.su.se

Maciej T. Tomczak is a researcher at Baltic Nest Institute, Stock-

holm University. His research concentrates on food-web and fisheries

interactions, integrated ecosystems assessment and management of

marine ecosystems.

Address: Baltic Nest Institute, Stockholm Resilience Centre, Stock-

holm University, 106 91 Stockholm, Sweden.

e-mail: maciej.tomczak@stockholmresilience.su.se

AMBIO 2012, 41:613–625 625

� Royal Swedish Academy of Sciences 2012

www.kva.se/en 123


	Uncertainties in a Baltic Sea Food-Web Model Reveal Challenges for Future Projections
	Abstract
	Introduction
	Materials and Methods
	Study Area
	Modeling Approach
	Simplified Model Uncertainty and Sensitivity Analysis
	Key Groups and Variation in Their Input Biomass Data
	Model Uncertainty Caused by the Variation in Input Biomass Data
	Alternative Environmental Forcing of the Past
	How Uncertain Are Climate and Fishery-Driven Future Food-Web Projections Based on Changes in Key Group Biomasses?


	Results
	Key Groups and Variation in Their Input Biomass Data
	Model Uncertainty Caused by the Variation in Input Biomass Data
	Changes in Trophic Control
	Alternative Environmental Forcing of the Past
	How Uncertain Are Climate and Fishery-Driven Future Food-Web Projections?

	Discussion
	Model Uncertainty Caused by Variations in the Input Biomass Data
	Food-Web Function
	Environmental Forcing
	Variations in Future Projections
	Implications to Ecosystem Management

	Acknowledgments
	References


