Do we need better models?

Workshop SMHI 2014 Presentation: Kari Eilola, Elin Almroth-Rosell and Ivan Kurnetsov

Biogeochemical reactor

- 1. External nutrient input.
- 2. Internal nutrient cycling.
- 3. Internal nutrient removal.
- 4. Net nutrient export.

Bioavailable Nutrient Budgets

Ecosupport model ensemble *Meier et al. (2012a)*

Present Future (REF) (BAU)

Sink efficiency

- N= 97% (95%, 94%)
- P= 85% (67%, 64%)

Nutrient export	Nutrient supply		
23 N	835 N		
6 P	39 P		
37 N 69 N	819 N	1108 N	
13 P 19 P	39 P	51 P	

 No net internal sources, only possible sinks and internal nutrient cycling!

Simulated past and future variations

Uncertainty:

- Historical spread caused by differences in <u>model responses</u> to changing nutrient loads and physical forcing
- Future spread in addition caused by different climate and socio economic <u>scenarios</u>

Simulated <u>unknown</u> past (?) variations

Gustafsson et al. 2012 Reconstructing the Development of Baltic Sea Eutrophication 1850–2006

(realistic)?

Fonselius and Valderama (2003)

BY 15 Phosphate annual means at 100 and 200 m

More data available in data bases ?

Model validation:

- Available data?
- Uncertainty?

Fonselius and Valderama (2003)

BY 15 Phosphate annual means at 100 and 200 m

Every data point is a Rembrandt painting!

The only historical in-situ information that exist. Restore and make the data useful.

More data available in data bases ?

Problem example:

 Old and new TotP data in the same database are not directly comparable.

Needed:

• Common processed and comparable data sets.

SMHI: Method shift 1.1.2005

- New TotP laboratory method introduced at SMHI
- Method change cause an increase of TotP, on average 0.15 µM.
- Method change is well documented including parallell measurements.

Take care of present day data for the future!

Östersjön totP - PO4 månadsmedel, djup 0m

Resolution of processes

- Spatial and temporal resolution of 3D-models require further understanding of regional to local processes.
- We still treat the basins much as horizontally homogenous regarding to biogeochemical processes though the horizontal resolution is much higher in the 3D-models.

Burial (main P sink)

• Spatial and temporal changes of burial are not well resolved or understood in the models.

Annually accumulated sediment layer (mm/year)

AAL data from Mattila et al. (2006)

• Factor 3-5 diff in time and space of median AAL

Sediment oxygen conditions and phosphorus dynamics

Elin Almroth-Rosell, Kari Eilola, Ivan Kuznetsov, Per O.J. Hall, Markus Meier

$$OPD = 2\emptyset D_s \frac{[O_2]_{BW}}{F_{O_2}^0} \qquad D_s = \frac{D}{1 - \ln(\emptyset^2)} \qquad Submitted Tellus 2014$$

Separated N, P detritus

- Negative export ?
- No supply.
- At some point the net export will become negative.
- The net import will finally be balanced by the internal nutrient removal.
- Challenge: Understand the role of open boundary conditions in preindustrial times and in a future with climate driven sea level changes.

Internal nutrient removal

Baltic Sea - North Sea Nutrient Cycling

NEMO-Nordic-SCOBI

I. Kuznetsov, R. Hordoir, C. Dieterich, A. Höglund, M. Meier

Silicate and separated N, P, Si detritus

Baltic Sea boundary and the Swedish Western Seas

re 4: Winter (DJF) sea surface DIN (a - run A, c - run B) and corresponded cost function₂ 5: Winter (DJF) sea surface DIP (a - run A, c - run B) and corresponded cost functions

Meier et al. (2012b) Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations

- Historical P very low.
- Comparable to Bothnian Bay dynamics ?
- Main model development in P-rich period.

The Baltic Sea Nutrient Cycling

Bothnian Bay

- Anomaly relative to annual mean of DIN and DIPx16
- Challenge: Understand missing DIP. (Bacterial recycling?)

Eastern Gotland Basin

- Anomaly relative to annual mean of DIN and DIPx16
- Challenge: Understand missing DIN. (Deviations from Redfield ratio? Nitrogen fixation?)

Plankton model

<u>SMHI</u>

- Redfield plankton model (N:P=16:1) simple visualization <u>based on</u> <u>simultaneous N and P observations</u> in the central and southern Baltic Sea.
- Calculate OrgN (TotN-DIN) and 16xOrgP (TotP-DIP)
- Plot anomaly relative to annual mean in each year

Data from Bornholm basin 10 m depth Data from Gotland deep 10 m depth

Internal nitrogen cycling

Eastern Gotland Basin

- ECOSUPPORT models showed high NO3 below summer thermocline.
- Average TotN 0-60m show no large summer increase.

Internal nitrogen cycling

N-fix Formas project

Implement the life cycle model into the 3D biogeochemical model RCO-SCOBI to further study dynamics of cyano bacteria.

Cyanobacteria life cycle models

 The P-loads differ by about 100%, from the smallest to the highest Ploads in the ECOSUPPORT state of the art ensemble. 70% of OrgN loads are neglected as "not bioavailable".

Nutrient supplies

- Challenge: Understand the actual supplies contributing to the Baltic Sea internal nutrient cycling.
 - Understand the dynamics of the biological availability of nutrients under different environmental conditions.

Eilola et al. (2011)

Nutrient inventory

- Challenge: Understand the inventory of different pools of nutrients actually contributing to the Baltic Sea nutrient cycling on centennial time scales.
- The comparability of simulated pools to the amount of sediment nutrients in reality involved into biogeochemical cycles is still an open question.

12

Denitrification (main N sink)

- Bottom water oxygen dependent sediment denitrification and the denitrification in coastal river deltas differ among state of the art Baltic Sea models.
- Challenge: Understand dynamics of nitrogen removal.

Denitrified fraction of mineralized nitrogen in the sediment

State of the art models

Coupled physicalbiogeochemical models

1.	RCO-SCOBI	(3D,	2nm)	SMHI	Sweden
2.	BALTSEM	(1D,	13 basins)	BNI	Sweden
3.	ERGOM	(3D,	3nm)	IOW	Germany

Biogeochemical models Simplified description from BALTSEM.

Key differences

- Representation of dead organic matter
- Sediment P dynamics
- Resuspension and sediment transport
- Horizontal resolution
- Vertical resolution

N, P and O_2 dynamics

- Inorganic and organic
- Sediment dynamics
- Redfield plankton dynamics

Eilola et al. (2011) Evaluation of biogeochemical cycles in an ensemble of three state-of-the-art numerical models of the Baltic Sea.