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SKILL OF DOWNSCALING

The quality of a downscaling product stands and falls with
the ability of the forcing GCM to provide meaningfull large
scale boundary conditions

The main shortcomings of GCMs in Europe:

Circulation in many GCMs is too zonal in winter (van Ulden »
et al., 2007)

Large part of uncertainty in Northern and Central European
temperature and precipitation stems from driving GCM
(Deéqué et al., 2007)
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SKILL OF DOWNSCALING RCMS

The parametrisations are developed and tuned for specific
climates and might be at least slightly misspecified under
future climate conditions.

RCMs have been shown to adequately simulate European

daily temperature and precipitation intensities , although »
considerable biases have to be expected (e.g. Jacob et al.,

2007)

RCMs are able to simulate spatially coherent fields.

The biases in one variable may propagate into strong biases »
in dependent variables (e.g. Yang et al. 2010).
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SKILL OF DOWNSCALING RCMS
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SKILL OF DOWNSCALING
RCMS
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SKILL OF DOWNSCALING - -
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SKILL OF DOWNSCALING ENSEMBLES

A way of filtering the occasional errors and an indicator of
uncertainty

Sharing codes — are the models independent? C
Ensemble design

multi-model ensembles

perturbed physics ensembles

Is it possible to distinguish between uncertainty related to
model formulation and that related to initial conditions?

Ensemble projections or single climate projections?

To weight or not to weight?
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SKILL OF 20-yr ret. values of T, (1961-1990)
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SKILL OF DOWNSCALING
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SKILL OF DOWNSCALING ENSEMBLES

A way of filtering the occasional errors and an indicator of
uncertainty

Sharing codes — are the models independent? C
Ensemble design

multi-model ensembles

perturbed physics ensembles

Is it possible to distinguish between uncertainty related to
model formulation and that related to initial conditions?

Ensemble projections or single climate projections?

To weight or not to weight?

Tallin, &-7 September 2012



PERFORMANCE OF RCMS IN REPRODUCING THE
CLIMATE
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PERFORMANCE OF RCMS IN REPRODUCING THE
Cl1 INMATF

Summer precip bias 5 percentile (%) Summer precip bias 50 percentile (%) Summer precip bias 95 percentile (%)

Simulated
precipitation bias
(%) w.r.t. E-OBS
for 1961-2000. The
maps show the
pointwise
smallest (left),
median (middle)
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(right) bias taken
from an ensemble
of 10 RCMs with
lateral boundary
conditions taken
from ERA4O0.
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SKILL OF DOWNSCALING RCMS

A few RCM validation studies consider sub-daily scales.
Jeong et al. 2011 have shown that diurnal precipitation cycle
In Sweden is reasonably captured by RCM at SMHI, but
afternoon peak occurs too early and is spatially too uniform.

Increasing model resolution in general improve model
simulations, in particular precipitation in complex terrain
(Salathé et al., 2003)
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SKILL OF DOWNSCALING
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RECENT DEVELOPMENTS AND
EXTENSION OF RCMS

Oceans - the aspect of boundary conditions in RCMs
Nudging procedure

Hydrostatic and nonhydrostatic solutions

Lakes in the RCMs

Dynamics of vegetation

Biogeochemistry
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SKILL OF DOWNSCALING MOS

MOS has been shown to successfully correct temperature
biases as well as biases in precipitation intensities and the
number of wet days (Piani et al. 2010)

Widmann et al. 2003 developed a non-local MOS that corrects
systematic spatial displacements of precipitation.

Yang et al. 2010 applied MOS to improve correlation between
simulated temperature and precipitation.

MOS is not capable of correcting the misrepresentation of
temporal structure of a simulated variable (cannot correct
errors in the lenght of dry, wet or hot spells).
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SKILL OF DOWNSCALING MOS
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SKILL OF DOWNSCALING MOS
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SKILL OF DOWNSCALING PP

PP explicity uses an empirical knowledge by inclusion of
observational data into statistical models. A simulated
predictands are bias free.

If the predictors do not capture the climate change signal,
nonstationarities may arise.

Underrepresentation of temporal variability

Problems with variability around the mean. There are
methods to deal with it: inflation or randomisation, butitis
iImpossible to evaluate their quality in the scenarios for
future.
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SKILL OF DOWNSCALING PP

A main disadvantage of PP is a handling of spatial
coherence.

The development of downscaling methods to full spatial
fields for climate change studies is still in its early stages
(Onibon et al. 2004 disggregation of areal rainfall by the
Gaussian process).
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Concept of added value

Orlanski, 1975
Laprise, 2004
von Storch, 2005
Feser, 2006

Di Luca, 2012
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SUMMARY

RCMs are able to improve quality and precission of GCMs, but
with some limitations.

RCMs simulations are biased and these biases are partly
common to all models (they are not excluded by ensembles)

MOS is able to correct a considerable part of biases, the
distribution based corrections should be implemented in
majority of cases.

PP explicity uses an empirical knowledge by inclusion of
observational data into statistical models. A simulated
predictands are bias free.

If the predictors do not capture the climate change signal,
nonstationarities may arise.
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STATISTICAL-EMPIRICAL DOWNSCALING METHODS

Model Output Statistics
bias correction
delta change or scaling

Perfect Prognosis
regression methods
weather classification methods

Weather Generators
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VALIDATION TECHNICS

Errors of driving global climate model
Errors inherent in the downscaling approach

Perfect Boundary Condition
Big Brother Experiments
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VALIDATION INDICES

Mean, variation, extremes, spatial and temporal
structure

Perfect Boundary Condition
Big Brother Experiments

Should the validation use the data directly with grid box
resolution or should data be smoothed in advance?

Distribution-wise and event —wise validation

Validation in climate change context (nonstationarity of
skill and/or biases)
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INTRODUCTION

Grid scale: 100-300 km
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Skillful scale: 100-2500 km

Downscaling:

a process linking large
scale variables with small
scale variables
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DRIVERS OF CLIMATE VARIABILITY AND CHANGE

Solar radiance

Oceanic processes

Biosphere with its annual cycle and long-term changes
Criosphere with its annual cycle and long-term changes
Volcanic processes

Biogeochemical cycles and their long-term changes

O GHG concentration
O Aerosols
U Sulphur compounds
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SKILL OF DOWNSCALING
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SELECTED SOURCES OF UNCERTAINTY

Effects of low spatial resolution

Results of
methodological
assumption

Sources of uncertainty

Sub-grid processes like cloud
formation, convection,
precipitation and many others
are not explicitly simulated

Real coastline and land cover
can significantly differ from
that 1n the model.

Low resolution flatens the
orography influencing not only
local climate conditions
predicted by the model but also
the atmospheric circulation
which has an impact on climate
in wider spatial scale.

Effects of
nonstationarity of
empirical and statistical
relationships between
large scale predictors
and local or point scale
predictands.

Effects of
nonstationarity of
biases.

Effects of systematic
errors in climate models
or their groups on
ensembles statistics

Uncertainty according to
natural drivers of climate
variability like solar or
volcanic activity.

Uncertainty according to
anthropogenic drivers of
climate change like
emissions and
concentrations of
aerosols and greenhouse
gases and changes in land
use.

Input data to climate
models - their quality,
precision and limited
temporal and spatial
distribution.




